Real-time fault detection and isolation in biological wastewater treatment plants

Author:

Baggiani F.1,Marsili-Libelli S.1

Affiliation:

1. Department of Systems and Computers, University of Florence, Via S. Marta, 3-50139, Florence, Italy

Abstract

Automatic fault detection is becoming increasingly important in wastewater treatment plant operation, given the stringent treatment standards and the need to protect the investment costs from the potential damage of an unchecked fault propagating through the plant. This paper describes the development of a real-time Fault Detection and Isolation (FDI) system based on an adaptive Principal Component Analysis (PCA) algorithm, used to compare the current plant operation with a correct performance model based on a reference data set and the output of three ion-specific sensors (Hach-Lange gmbh, Düsseldorf, Germany): two Nitratax® NOx UV sensors, in the denitrification tank and downstream of the oxidation tanks, where an Amtax® ammonium-N sensor was also installed. The algorithm was initially developed in the Matlab environment and then ported into the LabView 8.20 (National Instruments, Austin, TX, USA) platform for real-time operation using a compact Field Point®, a Programmable Automation Controller by National Instruments. The FDI was tested with a large set of operational data with 1 min sampling time from August 2007 through May 2008 from a full-scale plant. After describing the real-time version of the PCA algorithm, this was tested with nine months of operational data which were sequentially processes by the algorithm in order to simulate an on-line operation. The FDI performance was assessed by organizing the sequential data in two differing moving windows: a short-horizon window to test the response to single malfunctions and a longer time-horizon to simulate multiple unrepaired failures. In both cases the algorithm performance was very satisfactory, with a 100% failure detection in the short window case, which decreased to 84% in the long window setting. The short-window performance was very effective in isolating sensor failures and short duration disturbances such as spikes, whereas the long term horizon provided accurate detection of long-term drifts and proved robust enough to allow for some delay in failure recovery. The system robustness is based on the use of multiple statistics which proved instrumental in discriminating among the various causes of malfunctioning.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3