Viability of multiple antibiotic resistant bacteria in distribution lines of treated sewage effluent used for irrigation

Author:

Al-Bahry S. N.1,Mahmoud I. Y.1,Al-Khaifi A.2,Elshafie A. E.1,Al-Harthy A.1

Affiliation:

1. Department of Biology, College of Science, Sultan Qaboos University, P.O. Box 36, PC 123, Al-Khodh, Oman E-mail: snbahry@squ.edu.om; ibrahimy@squ.edu.om; elshafie@squ.edu.om; asila@squ.edu.om

2. Department of Biology, College of Medicine, Sultan Qaboos University, P.O. Box 35, P.C. 123, Al-Khodh, Oman E-mail: amani@squ.edu.om

Abstract

Viability of multiple antibiotic resistant bacteria (MARB) in tertiary treated sewage effluent (TTSE) used for irrigation, was investigated at the Sultan Qaboos University sewage treatment plant (STP). This water recycle system is used here as a model for the systems commonly used throughout Oman and the Gulf region. Samples of TTSE were collected weekly from four sites, 1.5 km from each other. Chlorine levels declined gradually at the three sites with increasing distance from the STP. Viable bacteria, coliforms and nitrate concentrations increased significantly while biological oxygen demand (BOD) declined after STP chlorination. Mean values of turbidity changed slightly. Trace elements values were insignificant. A total of 336 bacteria from 8 genera revealed that the dominant isolates were Enterobacter spp., Pseudomonas spp., and Aeromonas spp. Among the isolates 59.8% were multiply resistant to several antibiotics. Resistance was higher to ampicillin followed by sulphamethoxazole, carbenicillin, streptomycine and minocycline. Frequency of resistance to the 14 antibiotics varied among the isolates. The present system related to the viability of MARB in TTSE used for irrigation may have serious implications for public health and wildlife. Results of this investigation will be of value in modifying current STPs systems and thus avoiding serious health issues.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3