Using Bayesian network models to incorporate uncertainty in the economic analysis of pollution abatement measures under the water framework directive

Author:

Barton D.N.1,Saloranta T.1,Bakken T.H.1,Lyche Solheim A.1,Moe J.1,Selvik J.R.1,Vagstad N.1

Affiliation:

1. Norwegian Institute for Water Research (NIVA), Norway

Abstract

The evaluation of water bodies “at risk” of not achieving the Water Framework Directive's (WFD) goal of “good status” begs the question of how big a risk is acceptable before a programme of measures should be implemented. Documentation of expert judgement and statistical uncertainty in pollution budgets and water quality modelling, combined with Monte Carlo simulation and Bayesian belief networks, make it possible to give a probabilistic interpretation of “at risk”. Combined with information on abatement costs, a cost-effective ranking of measures based on expected costs and effect can be undertaken. Combined with economic valuation of water quality, the definition of “disproportionate cost” of abatement measures compared to benefits of achieving “good status” can also be given a probabilistic interpretation. Explicit modelling of uncertainty helps visualize where research and consulting efforts are most critical for reducing uncertainty. Based on data from the Morsa catchment in South-Eastern Norway, this paper discusses the relative merits of using Bayesian belief networks when integrating biophysical modelling results in the benefit-cost analysis of derogations and cost-effectiveness ranking of abatement measures under the WFD.

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3