Disinfection effects on E. coli using TiO2/UV and solar light system

Author:

Cho I.-H.1,Moon I.-Y.1,Chung M.-H.1,Lee H.-K.1,Zoh K.-D.1

Affiliation:

1. Department of Environmental Health and Institute of Health and Environment, Graduate School of Public Health, Seoul National University, Seoul, Korea

Abstract

First, a continuous flow TiO2/UV reactor was designed and developed in order to examine E. coli disinfection effect using UV light. The optimum conditions for disinfection such as flow rate, light intensity, TiO2 concentration, initial E. coli concentration were examined. The results are as follow (i) The use of the quartz device and TiO2 (anatase) resulted in killing of E. coil within minutes. (ii) Photocatalytic disinfection with UV light in the presence of TiO2 more effectively killed E. coli than UV or TiO2 adsorption only. (iii) As flow rate increased, the survival ratio of E. coli decreased, but over 3 L/min of flow rate, the efficiency was limited. (iv) E. coli survival ratio decreased linearly with increasing UV light intensity. (v) The dosage of TiO2 affected the E. coli disinfection efficiency, and above 0.1 wt% TiO2 concentration, the disinfection was less effective because TiO2 particles may result in screening off the light. (ri) The disinfection reaction follows first-order kinetics. Secondly, outdoor experiments with natural sunlight instead of artificial UV light in TiO2 reactors were also conducted to investigate alternative energy source applicability on E. coli disinfection. It is found that the presence of clouds in the sky markedly increased the time required for killing E. coli and the bacteria cells also disappeared with a first-order kinetics. On the basis of these experimental observations, the disinfection of E. coli using TiO2 under solar light irradiation can be a feasible application of the advanced oxidation process.

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3