Biodegradation of 2,4-dichlorophenol in a fluidized bed reactor with immobilized Phanerochaete chrysosporium

Author:

Li Xiao-ming12,Yang Qi31,Zhang Ying31,Zheng Wei31,Yue Xiu31,Wang Dong-bo31,Zeng Guang-ming3

Affiliation:

1. College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China

2. School of the Environment, Guangxi University, Nanning 530004, P.R. China

3. Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China

Abstract

The performance of a fluidized bed reactor using immobilized Phanerochaete chrysosporium to remove 2,4-dichlorophenol (2,4-DCP) from aqueous solution was investigated. The contribution of lignin peroxidase (LiP) and manganese peroxidase (MnP) secreted by Phanerochaete chrysosporium to the 2,4-DCP degradation was examined. Results showed that Lip and Mnp were not essential to 2,4-DCP degradation while their presence enhanced the degradation process and reaction rate. In sequential batch experiment, the bioactivity of immobilized cells was recovered and improved during the culture and the maximum degradation rate constant of 13.95 mg (Ld)−1 could be reached. In continuous bioreactor test, the kinetic behavior of the Phanerochaete chrysosporium immobilized on loofa sponge was found to follow the Monod equation. The maximum reaction rate was 7.002 mg (Lh)−1, and the saturation constant was 26.045 mg L−1.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3