Attenuation of TNT in seawater microcosms

Author:

Harrison I.1,Vane C. H.1

Affiliation:

1. British Geological Survey, Kingsley Dunham Centre, Keyworth, Nottingham NG12 5GG, UK

Abstract

The ability of two differing marine sediments (one clayey, the other sandy) to attenuate the explosive 2,4,6-trinitrotoluene (TNT), dissolved in intertidal seawater from the eastern English coast of the North Sea, was examined using aerobic microcosms. Analysis of the seawater from the microcosms revealed an initial sharp decline in TNT concentration with clayey sediment in both sterilized (to prevent microbial activity) and unsterilized microcosms. This effect did not occur to such a marked extent in similar sterile and non-sterile sandy sediment microcosms and was attributed mainly to sorption of TNT to the fine clay particles of the clayey sediment. As time progressed, the attenuation of TNT in microcosms containing either type of sediment was found to be less in those that had been sterilized compared with those where microbial action proceeded unhindered. Feeding the microcosms, (i.e. supplying extra carbon sources for the microbial communities), appeared to have a small, but perceptible, enhancing effect upon TNT dissipation. The attenuation of TNT was also measured in large microcosms containing 2.5 L of seawater and no sediment. Analysis of the seawater revealed a gradual decline in TNT concentration in non-sterile and fed microcosms compared to their sterile counterpart. Overall, this laboratory study showed that the attenuation of TNT is slow (half-life in seawater ca.1900 days; half-life sand sediment <700 days; half life in clay sediment 130 days) under conditions commonly encountered in coastal waters of the North Sea.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3