Risk analysis of seasonal stream water quality management

Author:

Jha Manoj1,Gu Roy12

Affiliation:

1. Civil Engineering Department, Iowa State University, Ames Iowa, USA

2. South China University of Technology, Guangzhou, People's Republic of China

Abstract

Seasonal discharge programs, which take advantage of temporal variation of stream assimilative capacity, are cost effective. However, these seasonal discharge control programs should not increase the risk of water quality violations. A method is presented to estimate the allowable pollutant loads under both seasonal and non-seasonal discharge control programs for a single discharger that maintains the same level of risk of water quality violation. An enhanced in-stream water quality model QUAL2E-UNCAS was applied to a 39-km river reach of the Des Moines River below Des Moines Sewage Treatment Plant (DMSTP) in Iowa. The model was calibrated for dissolved oxygen (DO), biological oxygen demand (BOD), and ammonia as nitrogen with standard errors of 10, 17, and 23% by comparing with the observed water quality data. Monte-Carlo simulation technique was then implemented for seasonal and non-seasonal discharge program to assess the water quality violation risk and the allowable pollutant load. The results indicated that the four-seasonal program offers about 136% increase in BOD loading and 61% increase in ammonia loading when compared with the non-seasonal program without any increase in the violation probabilities, whereas the two-seasonal program only offers 13% decrease in BOD loading and 56% increase in ammonia loading. It is found that the multi-discharge program was beneficial for both water quality indicators, and thus provides a way of reducing the overall cost of waste treatment.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3