A study on the degradation of direct pink by the low-frequency ultrasonic irradiation

Author:

Zheng Huaili1,Zhu Guocheng1,He Qiang1,Hu Peng1,Jiao Shijun1,Tshukudu Tiroyaone1,Zhang Peng1

Affiliation:

1. Key laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing 400045, China

Abstract

The ultrasonic degradation of direct pink was investigated in this study. Parameters affecting ultrasonic degradation degree such as ultrasonic power, pH, bubbling gas and the presence of inorganic salts, were examined. The results showed that the addition of inorganic salts (NaCl, CuSO4) facilitated the degradation of direct pink while the addition of K2CO3 inhibited it. The degradation degree was enhanced significantly in the presence of saturated gases as listed here in decreasing order of effectiveness: argon > air > oxygen > nitrogen. The degradation degree of direct pink was largely influenced by pH value and boosted by acidic condition. The optimum degree could be achieved when pH value was 3.0 or when the sound power was 150 W. However, the degradability decreased notably in alkaline condition. Also, ultrasound/H2O2 technology was used, and the results showed that ultrasound/H2O2 has a better effect on the degradation than ultrasound alone or with H2O2 oxidation. After 120 minutes, the degradation degree could reach 78.0% under the optimum conditions, when the ultrasonic power was 150 W, 50 μL H2O2, CuSO4 and argon atmosphere being added and the initial pH value of the model dye was 3.0.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3