Classification and regression tree (CART) analysis for indicator bacterial concentration prediction for a Californian coastal area

Author:

Bae Hun-Kyun1,Olson Betty H.1,Hsu Kuo-Lin1,Sorooshian Soroosh1

Affiliation:

1. Department of Civil and Environmental Engineering, Henry Samueli School of Engineering, University of California, 1368 Social Ecology II, Irvine CA, 92697, USA E-mail: bholson@uci.edu; kuolinh@uci.edu; soroosh@uci.edu

Abstract

The study used existing indicator bacterial data and a number of physicochemical parameters that can be measured instantaneously to determine if a decision tree approach, especially classification and regression tree, could be used to predict bacterial concentrations in timely manner for beach closure management. Each indicator bacteria showed different tree structures and each had its own significant variables; Dissolved oxygen played an important role for both total coliform and fecal coliform and turbidity was the most important factor to predict concentrations of enterococci for decision tree approaches. Root mean squared error stayed between 5 and 6.5% of the average values of observations; RMSEs from each simulation, 0.25 for total coliform, 0.31 for fecal coliform, and 0.29 for enterococci. Estimations from tree structures would be regarded as a good representation of the actual data. In addition to results of the objective function, RMSE, 77.5% of actual value fell into the 95% of confidence interval of estimations for total coliform concentrations, 60% for fecal coliform concentrations, and 62.5% for enterococci concentrations. The approach showed reliable estimations for the majority of the data processed, although the method did not portray low concentrations of bacteria as well.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3