Knowledge-based system for automatic MBR control

Author:

Comas J.1,Meabe E.2,Sancho L.2,Ferrero G.1,Sipma J.1,Monclús H.1,Rodriguez-Roda I.13

Affiliation:

1. Laboratory of Chemical and Environmental Engineering (LEQUiA), University of Girona, Campus Montilivi s/n, E-17071 Girona, Catalonia, Spain

2. Section of Environmental Engineering, CEIT and Tecnun (University of Navarra), Paseo de Manuel Lardizábal 15, E-20018, Donostia-San Sebastian, Spain

3. ICRA - Catalan Institute of Water Research, Parc Científic i Tecnològic de la Universitat de Girona, Edifici H2O Emili Grahit 101, 17003 Girona, Spain

Abstract

MBR technology is currently challenging traditional wastewater treatment systems and is increasingly selected for WWTP upgrading. MBR systems typically are constructed on a smaller footprint, and provide superior treated water quality. However, the main drawback of MBR technology is that the permeability of membranes declines during filtration due to membrane fouling, which for a large part causes the high aeration requirements of an MBR to counteract this fouling phenomenon. Due to the complex and still unknown mechanisms of membrane fouling it is neither possible to describe clearly its development by means of a deterministic model, nor to control it with a purely mathematical law. Consequently the majority of MBR applications are controlled in an “open-loop” way i.e. with predefined and fixed air scour and filtration/relaxation or backwashing cycles, and scheduled inline or offline chemical cleaning as a preventive measure, without taking into account the real needs of membrane cleaning based on its filtration performance. However, existing theoretical and empirical knowledge about potential cause-effect relations between a number of factors (influent characteristics, biomass characteristics and operational conditions) and MBR operation can be used to build a knowledge-based decision support system (KB-DSS) for the automatic control of MBRs. This KB-DSS contains a knowledge-based control module, which, based on real time comparison of the current permeability trend with “reference trends”, aims at optimizing the operation and energy costs and decreasing fouling rates. In practice the automatic control system proposed regulates the set points of the key operational variables controlled in MBR systems (permeate flux, relaxation and backwash times, backwash flows and times, aeration flow rates, chemical cleaning frequency, waste sludge flow rate and recycle flow rates) and identifies its optimal value. This paper describes the concepts and the 3-level architecture of the knowledge-based DSS and details the knowledge-based control module. Preliminary results of the application of the control module to regulate the air flow rate of an MBR working with variable flux demonstrates the usefulness of this approach.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3