Resistance of nitrifiers inhabiting activated sludge to ciliate grazing

Author:

Pajdak-Stós Agnieszka1,Fiałkowska Edyta1,Fyda Janusz1,Babko Roman2

Affiliation:

1. Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland E-mail: agnieszka.pajdak-stos@uj.edu.pl; edyta.fialkowska@uj.edu.pl; janusz.fyda@uj.edu.pl

2. Department of Zoology, Pedagogical University of Sumy, Romenska str. 87, Sumy 40002, Ukraine E-mail: rbabko@gazeta.pl

Abstract

We monitored the succession of nitrifiers in a ne.wly opened wastewater treatment plant for five weeks. After the first distinct decrease in total nitrogen, we began monitoring the appearance, size and number of nitrifying bacteria colonies using the fluorescence in situ hybridization (FISH) method. Ammonia oxidizing bacteria (AOB) colonies were visualized under green excitation as red, and nitrite oxidizing bacteria (NOB) colonies were visualized under blue excitation as green. The changes in protozoan community were monitored simultaneously. Ciliates were divided into four functional groups: predatory, bacterivorous free-swimming, bacterivorous crawling, and sessile. The results showed that at the time of the first distinct total nitrogen decrease, the mean length of both AOB and NOB were relatively low, but the colonies, especially those of nitrite oxidizers, were abundant. In time, the distribution of ammonia oxidizer colonies shifted towards larger sizes, but their quantity decreased. In the case of nitrite oxidizers, a similar trend was noticeable but less pronounced. These changes corresponded with an increasing number of crawling bacterivorous ciliates dominated by the “scavenger” genus Aspidisca. The increasing size of nitrifier colonies may have been due to the growing grazing pressure from crawling bacterivorous ciliates. The strong grazing pressure did not negatively affect N-NH4+ removal effectiveness.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3