Application of high rate nitrifying trickling filters to remove low concentrations of ammonia from reclaimed municipal wastewater

Author:

van den Akker B.12,Holmes M.3,Short M. D.2,Cromar N. J.1,Fallowfield H. J.1

Affiliation:

1. Department of Environmental Health and the Flinders Research Centre for Coastal and Catchment Environments, Flinders University, Adelaide, South Australia, Australia E-mail: howard.fallowfield@flinders.edu.au

2. *Current address: UNSW Water Research Centre, University of New South Wales, Sydney NSW 2052, Australia E-mail: b.vandenakker@unsw.edu.au

3. United Water International, 180 Greenhill Road, Parkside, South Australia 5063, Australia E-mail: mike.holmes@uwi.com.au

Abstract

The interference of ammonia with the chlorination process is a problem for many reclaimed water treatment plant operators. This paper presents the findings from a series of pilot experiments that investigated the efficacy of high flow rate nitrifying trickling filters (NTFs) for the removal of low concentrations of ammonia (0.5–3.0 mg N L−1) from reclaimed wastewater. Results showed that nitrification was impeded by a combination of high organic carbon loads and aquatic snails, which consumed much of the active biomass. With adequate snail control, nitrification rates (0.3–1.1 g NH4-N m−2 d−1) equivalent to that of traditional wastewater NTFs were achieved, despite operating under comparably low ammonia feed concentrations and high hydraulic flow rates.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3