Two-phase reactors applied to the removal of substituted phenols: comparison between liquid-liquid and liquid-solid systems

Author:

Tomei M. C.1,Annesini M. C.2,Piemonte V.2,Prpich G. P.3,Daugulis A. J.3

Affiliation:

1. Water Research Institute, C.N.R., Via Salaria km 29.300, 00016 Monterotondo (Rome), Italy E-mail: tomei@irsa.cnr.it

2. Department of Chemical Engineering Materials Environment, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy E-mail: annesini@uniroma1.it; piemonte@ingchim.ing.uniroma1.it

3. Department of Chemical Engineering, Queen's University, Kingston Ontario K7L 3N6, Canada E-mail: george.prpich@chee.queensu.ca; andrew.daugulis@chee.queensu.ca

Abstract

In this paper, a comparison is provided between liquid-liquid and liquid-solid partitioning systems applied to the removal of high concentrations of 4-nitrophenol. The target compound is a typical representative of substituted phenols found in many industrial effluents while the biomass was a mixed culture operating as a conventional Sequencing Batch Reactor and acclimatized to 4-nitrophenol as the sole carbon source. Both two-phase systems showed enhanced performance relative to the conventional single phase bioreactor and may be suitable for industrial application. The best results were obtained with the polymer Hytrel™ which is characterized by higher partition capability in comparison to the immiscible liquid solvent (2-undecanone) and to the polymer Tone™. A model of the two systems was formulated and applied to evaluate the relative magnitudes of the reaction, mass transfer and diffusion characteristic times. Kinetic parameters for the Haldane equation, diffusivity and mass transfer coefficients have been evaluated by data fitting of batch tests for liquid-liquid and liquid-solid two phase systems. Finally, preliminary results showed the feasibility of polymer regeneration to facilitate polymer reuse by an extended contact time with the biomass.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3