Stability of metal oxide nanoparticles in aqueous solutions

Author:

Tso Chih-ping1,Zhung Cheng-min1,Shih Yang-hsin1,Tseng Young-Ming1,Wu Shian-chee2,Doong Ruey-an3

Affiliation:

1. Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung, Chinese Taiwan

2. Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Chinese Taiwan

3. Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Chinese Taiwan

Abstract

The application of nanoparticles in the processes of making commercial products has increased in recent years due to their unique physical and chemical properties. With increasing amount of commercial nanoparticles released into nature, their fate and effects on the ecosystem and human health are of growing concern. This study investigated the stability and morphology of three metal oxide nanoparticles in aqueous solutions. The commercially available nanoparticles, TiO2, ZnO, SiO2, aggregated quickly into micrometer-size particles in aqueous solutions, which may not threaten human health. Their changes in morphology and characteristics were further examined by dynamic light scattering (DLS) method and transmission electron microscopy (TEM). Among the several dispersion approaches, ultrasonication was found to be the most effective for disaggregating nanoparticles in water. For these three selected nanoparticles, ZnO could not remain stable in suspensions, presumably due to the dissolution of particles to form high concentration of ions, resulting in enhanced aggregation of particles. In addition, the existence of dissolved organic matters stabilized nanoparticles in lake water and wastewater for several hours in spite of the high concentration of cations in these real-water samples. The fate of metal oxide nanoparticles in natural water bodies would be determined by the type and concentration of cations and organic matters. Results obtained in this study revealed that the stability of nanoparticles changed under different aqueous conditions and so did their fate in the environment.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3