Photocatalysis assisted by peroxymonosulfate and persulfate for benzotriazole degradation: effect of pH on sulfate and hydroxyl radicals

Author:

Ahmadi Mehdi12,Ghanbari Farshid2,Moradi Mahsa3

Affiliation:

1. Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

2. Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

3. Department of Environmental Health Engineering, School of Paramedicine and Public Health, Semnan University of Medical Sciences, Semnan, Iran and Department of Environmental Health Engineering, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran

Abstract

Recently, notable attempts have been devoted to removing emerging pollutants from water resources. Benzotriazole (BTA) as an emerging pollutant has widely been detected in the aquatic environment and water resources. In the current work, peroxymonosulfate (PMS) and persulfate (PS) were added to a TiO2/UV system for BTA degradation, as electron acceptors to overcome recombination of hole and electron. Additions of PMS and PS to the photocatalysis process considerably increased removal efficiency. The rate constants of UV/TiO2/PMS, UV/TiO2/PS and UV/TiO2 were 0.0217 min−1, 0.0152 min−1 and 0.0052 min−1 respectively. The results showed that pH significantly affected the UV/TiO2/PMS system while it marginally affected UV/TiO2/PS. Scavenging experiments using alcohols indicated that in acidic pH, the dominant oxidant was sulfate radical in both systems. The contribution of hydroxyl radical in BTA degradation was boosted at alkaline and neutral conditions especially in the UV/TiO2/PMS system. Moreover, other scavenging experiments implied that reaction of radicals occurred at both the catalyst surface and in solution. The mineralization results showed that PMS and PS significantly increased chemical oxygen demand and total organic carbon removal efficiencies. In general, presence of PMS in the photocatalysis process had a better performance compared to PS in terms of BTA removal and mineralization.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3