Affiliation:
1. Institution of Chemistry and Molecular Engineering, Zhengzhou University, China
Abstract
Bi7O9I3, a kind of visible-light-responsive photocatalyst, with hierarchical micro/nano-architecture was successfully synthesized by oil-bath heating method, with ethylene glycol as solvent, and applied to degrade sulfonamide antibiotics. The as-prepared product was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-visible diffuse reflection spectra and scanning electron microscopy (SEM). XRD and XPS tests confirmed that the product was indeed Bi7O9I3. The result of SEM observation shows that the as-synthesized Bi7O9I3 consists of a large number of micro-sheets with parallel rectangle structure. The optical test exhibited strong photoabsorption in visible light irradiation, with 617 nm of absorption edges. Moreover, the difference in the photocatalytic efficiency of as-prepared Bi7O9I3 at different seasons of a whole year was investigated in this study. The chemical oxygen demand removal efficiency and concentration of NO3− and SO42– of solution after reaction were also researched to confirm whether degradation of the pollutant was complete; the results indicated a high mineralization capacity of Bi7O9I3. The as-synthesized Bi7O9I3 exhibits an excellent oxidizing capacity of sulfadiazine sodium and favorable stability during the photocatalytic reaction.
Subject
Water Science and Technology,Environmental Engineering
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献