Modelling and characterization of primary settlers in view of whole plant and resource recovery modelling

Author:

Bachis Giulia1,Maruéjouls Thibaud1,Tik Sovanna1,Amerlinck Youri2,Melcer Henryk3,Nopens Ingmar2,Lessard Paul1,Vanrolleghem Peter A.1

Affiliation:

1. Département de génie civil et de génie des eaux, Université Laval, 1065 av. de la Médecine, Québec, QC, Canada G1 V 0A6

2. Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium

3. Brown and Caldwell, 999 Third Avenue, Suite 500, Seattle, WA 98104, USA

Abstract

Characterization and modelling of primary settlers have been neglected pretty much to date. However, whole plant and resource recovery modelling requires primary settler model development, as current models lack detail in describing the dynamics and the diversity of the removal process for different particulate fractions. This paper focuses on the improved modelling and experimental characterization of primary settlers. First, a new modelling concept based on particle settling velocity distribution is proposed which is then applied for the development of an improved primary settler model as well as for its characterization under addition of chemicals (chemically enhanced primary treatment, CEPT). This model is compared to two existing simple primary settler models (Otterpohl and Freund; Lessard and Beck), showing to be better than the first one and statistically comparable to the second one, but with easier calibration thanks to the ease with which wastewater characteristics can be translated into model parameters. Second, the changes in the activated sludge model (ASM)-based chemical oxygen demand fractionation between inlet and outlet induced by primary settling is investigated, showing that typical wastewater fractions are modified by primary treatment. As they clearly impact the downstream processes, both model improvements demonstrate the need for more detailed primary settler models in view of whole plant modelling.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Reference31 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3