Aluminosilicate-based adsorbent in equimolar and non-equimolar binary-component heavy metal removal systems

Author:

Xu Meng1,Hadi Pejman12,Ning Chao1,Barford John1,An Kyoung Jin2,McKay Gordon13

Affiliation:

1. Chemical and Biomolecular Engineering Department, Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong SAR

2. School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Hong Kong SAR

3. Division of Sustainable Development, College of Science, Engineering and Technology, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar

Abstract

Cadmium (Cd) and lead (Pb) are toxic heavy metals commonly used in various industries. The simultaneous presence of these metals in wastewater amplifies the toxicity of wastewater and the complexity of the treatment process. This study has investigated the selective behavior of an aluminosilicate-based mesoporous adsorbent. It has been demonstrated that when equimolar quantities of the metals are present in wastewater, the adsorbent uptakes the Pb2+ ions selectively. This has been attributed to the higher electronegativity value of Pb2+ compared to Cd2+ which can be more readily adsorbed on the adsorbent surface, displacing the Cd2+ ions. The selectivity can be advantageous when the objective is the separation and reuse of the metals besides wastewater treatment. In non-equimolar solutions, a complete selectivity can be observed up to a threshold Pb2+ molar ratio of 30%. Below this threshold value, the Cd2+ and Pb2+ ions are uptaken simultaneously due to the abundance of Cd2+ ions and the availability of adsorption sites at very low Pb2+ molar ratios. Moreover, the total adsorption capacities of the adsorbent for the multi-component system have been shown to be in the same range as the single-component system for each metal ion which can be of high value for industrial applications.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

Reference68 articles.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3