Spatial rainfall prediction using optimal features selection approaches

Author:

Asghari Keyvan1,Nasseri Mohsen2

Affiliation:

1. Department of Civil Engineering, Isfahan University of Technology, Isfahan, Iran

2. Department of Civil Engineering, College of Engineering, University of Tehran, Tehran, Iran

Abstract

Rainfall as a semi-random hydrological event is difficult to forecast due to some very complicated and unforeseen physical factors and their chaotic behavior. Artificial neural networks (ANN), which perform a nonlinear mapping between inputs and outputs, have played a crucial role in rainfall forecasting. In this paper, some feature selection approaches have been implemented to simulate the regional scale rainfall field in order to address a few deficiencies of ANN, such as selection of informative features of input data encountered in hydrological processes. The main simulator is a multi-layer perceptron neural network optimized by simple genetic algorithm (GA) to determine optimal input vectors in order to compare with other statistical approaches. Current rainfall from a limited number of neighboring stations is shown to be valuable to forecast current rainfall of certain target stations in the province of Fars in Iran for 30 min leading time. Among the studied features selection approaches such as chi-squared, linear correlation coefficient and mutual information (MI), the results by MI have considerable competency with regard to computational efficiency using the optimized scenario by GA.

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3