Influence of snow ablation and frozen ground on spring runoff generation in the Mogot Experimental Watershed, southern mountainous taiga of eastern Siberia

Author:

Suzuki Kazuyoshi1,Kubota Jumpei2,Ohata Tetsuo1,Vuglinsky Valery3

Affiliation:

1. Institute of Observational Research for Global Change, Japan Agency for Marine-Earth Science and Technology, Yokosuka, 237-0061 Japan

2. Research Institute for Humanity and Nature, Kyoto, 753-8515 Japan

3. State Hydrological Institute, St. Petersburg, 199053 Russian Federation

Abstract

Snowmelt runoff is one of the most important discharge events in the southern mountainous taiga of eastern Siberia. The present study was conducted in order to understand the interannual variations in snowmelt infiltration into the frozen ground and in snowmelt runoff generation during the snowmelt period in the southern mountainous taiga in eastern Siberia. Analysis of the obtained data revealed the following: (1) snowmelt infiltration into the top 20 cm of frozen ground is important for evaluating snowmelt runoff generation because frozen ground absorbed from 22.9% (WY1983) to 61.5% (WY1981) of the maximum snow water equivalent. The difference in snowmelt infiltration for the two years appears to have been caused by the difference in snowmelt runoff generation; (2) the snowmelt runoff ratio increased with (i) increase in the fall soil moisture just before the soil surface froze and (ii) increase in the maximum snow water equivalent. The above results imply that the parameters governing snowmelt infiltration in the boreal taiga region in eastern Siberia are fall soil moisture and the maximum snow water equivalent, as is the case in the simple model presented by Gray et al.

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3