Artificial neural networks for estimating daily total suspended sediment in natural streams

Author:

Tayfur Gokmen1,Guldal Veysel2

Affiliation:

1. Department of Civil Engineering, Izmir Institute of Technology, Urla, Izmir, Turkey, 35340

2. Department of Civil Engineering, Suleyman Demirel Unversity, Isparta, Turkey

Abstract

Estimates of sediment loads in natural streams are required for a wide spectrum of water resources engineering problems from optimal reservoir design to water quality in lakes. Suspended sediment constitutes 75–95% of the total load. The nonlinear problem of suspended sediment estimation requires a nonlinear model. An artificial neural network (ANN) model has been developed to predict daily total suspended sediment (TSS) in rivers. The model is constructed as a three-layer feedforward network using the back-propagation algorithm as a training tool. The model predicts TSS rates using precipitation (P) data as input. For network training and testing 240 sets of data sets were used. The model successfully predicted daily TSS loads using the present and past 4 days precipitation data in the input vector with R2=0.91 and MAE=34.22 mg/L. The performance of the model was also tested against the most recently developed non-linear black box model based upon two-dimensional unit sediment graph theory (2D-USGT). The comparison of results revealed that the ANN has a significantly better performance than the 2D-USGT. Investigation results revealed that the ANN model requires a period of more than 75 d of measured P-TSS data for training the model for satisfactory TSS estimation. The statistical parameter range (xmin−xmax) plays a major role for optimal partitioning of data into training and testing sets. Both sets should have comparable values for the range parameter.

Publisher

IWA Publishing

Subject

Water Science and Technology

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3