Retracted: Prediction and optimization of volumetric power draw in an aerated and stirred vessel used in wastewater biological plant: a mathematical model developed by using central composite rotatable design analysis (CCRD)

Author:

Issa Hayder Mohammed1

Affiliation:

1. College of Engineering, Salahaddin University-Erbil, Erbil, Iraq

Abstract

In this study, the volumetric power draw P/V was determined as a factor in designing and identifying the optimal condition a successful aeration for stirred wastewater biological treatment vessels. The study was performed to characterize the volumetric power draw in the aerated stirred vessels by optimizing the operation variables. The concerning factors were improved by conjugating stirring and aeration with efficient and economic volumetric power draw condition. The drawn volumetric power was tested and analyzed for three independent parameters; impellers rotation speed (100–200 rpm), turbine blades submergence ratio S/W (0.33–1.67) and wastewater height level ratio H/D (1.37–1.58). A mathematical model was developed in the form of a nonlinear polynomial mathematical model to predict the P/V. The optimal values of the P/V and of relevant parameters were computed through the application of the Box–Wilson technique by application of the central composite rotatable design (CCRD) model. The volumetric power draw P/V and the relevant independent parameters are presented in optimal conditions surface plots that obtained from the nonlinear mathematical model. Optimum analysis result for the independent parameters showed low levels of impellers rotation speed and turbine submergence ratio draw lower P/V while wastewater height did not have a clear effect on P/V.

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3