Climate change and watershed hydrology: assessing variability in water balance components and groundwater flow patterns

Author:

Abdissa Abera Gonfa1ORCID,Chuko Fikadu Warku1ORCID

Affiliation:

1. Department of Earth Sciences, Wollega University, P.O. Box 395, Nekemte, Ethiopia

Abstract

ABSTRACT This study aimed to quantify the effect of climate change on water balance and groundwater flow systems over the Walga–Darge watersheds. In this paper, Water and Energy Transfer between Soil, Plants, and Atmosphere under quasi-Steady State and MODFLOW were used to assess the hydrological impact of climate change. The Mann–Kendall test and Sen's slope estimator were used to analyze climate change. The mean annual temperature shows increasing trends, whereas the mean annual precipitation indicates decreasing trends. The simulated annual mean surface runoff is projected to decrease by 17.18, 22.04, and 31.37 for 2040, 2060, and 2080, respectively, compared to the 1980s. The model also indicates a reduction in precipitation and increased temperature causes a relative change in recharge, ranging from a decrease of 2.65, 38.82, 50.91, 61.57, and 75.49 in the 2000s, 2010s, 2040s, 2060s, and 2080s, respectively. The MODFLOW outputs furthermore show that annual groundwater discharge to the stream has decreased by −26.46% from 1985 to 2020 and is expected to decrease by −34.02% by 2080 due to climate change. The results of the study indicate that the increasing trends in temperature and decreasing rainfall amounts pose a significant threat to the sustainable use of water resources.

Publisher

IWA Publishing

Reference62 articles.

1. Time series trend analysis of temperature and rainfall in lake Tana Sub-basin;Ethiopia. Environmental Systems Research,2015

2. Analysis of the effects of meteorological parameters on radio refractivity, equivalent potential temperature and field strength via Mann–Kendall test;Theoretical and Applied Climatology,2021

3. Innovative trend analysis of annual precipitation in Serbia during 1946–2019;Environmental Earth Sciences,2021

4. Impact of future climate change on land and water productivity for wheat crop (Wasit Governorate, Iraq);Caspian Journal of Environmental Sciences,2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3