Future impacts of river flow on hydropower generation in Great Britain

Author:

Golgojan Ana-Diana1ORCID,White Christopher J.1,Bertram Douglas1

Affiliation:

1. Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow G1 1XJ, UK

Abstract

ABSTRACT Climate change is likely to alter Great Britain's water resource availability for hydropower generation. This affects hydropower production due to uncertainty around the timing and magnitude of water availability, particularly run of river (RoR) schemes that lack the storage capacity to buffer seasonal flow variability. This study examines the likely future changes on RoR potential at locations across GB using the enhanced future flows (eFLaG) dataset. Results show that annual river flows are projected to increase in winter and spring but reduce in summer and autumn. This has an impact on RoR potential with a projected decrease in the near (2030–2059) and far future (2050–2079) for both summer (−19%, −32%) and autumn (−11%, −19%) throughout GB. Therefore, results indicate a decrease in the annual RoR potential in GB. This study underscores the importance of incorporating climate change considerations in the planning and operation of RoR schemes to ensure sustainable energy generation. This could be achieved by upgrading existing turbines to handle higher flows or designing new turbines capable of accommodating larger discharges to fully utilise the increased flows during winter. However, this should be done with consideration of the technical limitations and the opportunities for optimisations for system generation.

Publisher

IWA Publishing

Reference51 articles.

1. Long-term trends and seasonality detection of the observed flow in Yangtze river using Mann-Kendall and Sen's innovative trend method;Water,2019

2. The MaRIUS-G2G datasets: Grid-to-grid model estimates of flow and soil moisture for Great Britain using observed and climate model driving data;Geosci. Data J.,2018

3. Hydropower potential of run of river schemes in the Himalayas under climate change: A case study in the Dudh Koshi basin of Nepal;Water (Switzerland),2020

4. Chapter 4:Water, Water. In: Climate Change 2022: Impacts, Adaptation and Vulnerability;Pörtner,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3