Selection of representative general circulation models under climatic uncertainty for Western North America

Author:

Mahjour Seyed Kourosh1,Liguori Giovanni2,Faroughi Salah A.1

Affiliation:

1. a Geo-Intelligence Laboratory, Ingram School of Engineering, Texas State University, San Marcos, TX 78666, USA

2. b Department of Biological, Geological, and Environmental Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy

Abstract

Abstract Climate change research uses an ensemble of general circulation model runs (GCMs-runs) to predict future climate under uncertainties. To reduce computational costs, this study selects representative GCM-runs (RGCM-runs) for Western North America (WNA) based on their performance in replicating historical climate conditions from 1981 to 2005 and projecting future changes from 1981–2010 to 2071–2100. This evaluation is conducted under two representative concentration pathways (RCPs) scenarios, RCP4.5 and RCP8.5, from the Coupled Model Intercomparison Project 5. By using an envelope-based selection technique and a multi-objective distance-based approach, we identify four RGCM-runs per RCP representing diverse climatic conditions, including wet-warm, wet-cold, dry-warm, and dry-cold. Compared to the full-set, these selected runs show a decreased mean absolute error (MAE) between the reference and RGCM-runs concerning the monthly average mean air temperature (T̄) and precipitation (P̄). For RCP4.5, T̄ MAE is 0.45 (vs. 0.58 in the full-set) and P̄ MAE is 0.31 (vs. 0.42). For RCP8.5, T̄ MAE is 0.51 (vs. 0.75) and P̄ MAE is 0.25 (vs. 0.36). The lower MAE values in the RGCM-run set indicate closer alignment between predicted and reference values, making the RGCM-run suitable for climate impact assessments in the region.

Funder

Department of Energy's Biological and Environmental Research

Publisher

IWA Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3