Comparative evaluation of the dynamics of terrestrial water storage and drought incidences using multiple data sources: Tana sub-basin, Ethiopia

Author:

Berhanu Kibru Gedam1,Lohani Tarun Kumar2,Hatiye Samuel Dagalo1ORCID

Affiliation:

1. a Arba Minch Water Technology Institute, Faculty of Water Resources and Irrigation Engineering, Arba Minch University, Arba Minch, Ethiopia

2. b Arba Minch Water Technology Institute, Faculty of Hydraulic and Water Resources Engineering, Arba Minch University, Arba Minch, Ethiopia

Abstract

Abstract Evaluating water storage changes and addressing drought challenges in areas like the Tana sub-basin in Ethiopia is difficult due to limited data availability. The aim of this study was to evaluate the dynamics of terrestrial water anomaly and drought incidences by employing multiple data source. The Gravity Recovery and Climate Experiment (GRACE) and Global Land Data Assimilation System (GLDAS) datasets were used to assess the long-term water storage dynamics and drought incidences using the weighted water storage deficit index (WWSDI). WWSDI was used to identify drought periods, which ranged from severe to extreme drought. Despite the overall increase in average annual total water storage anomaly (TWSA) by 0.43 cm/year and a net gain of 50.68 cm equivalent water height from 2003 to 2022, there were instances of terrestrial water storage deficits, particularly in 2005, 2006, and 2009, during historical drought periods. The TWSA exhibited a strong correlation with Lake Tana water storage and precipitation anomalies after adjusting lag times. WWSDI displayed a high correlation with WSDI but a weak correlation with SPI and SPEI. Therefore, utilization of GRACE and GLDAS data is promising for evaluating terrestrial water storage and monitoring drought in data-deficient regions like the Tana sub-basin in Ethiopia.

Funder

Arba Minch University

Publisher

IWA Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3