Trend and change-point analyses of meteorological variables using Mann–Kendall family tests and innovative trend assessment techniques in New Bhupania command (India)

Author:

Gaddikeri Venkatesh1,Sarangi A.2,Singh D. K.1,Jatav Malkhan Singh3,Rajput Jitendra1,Kushwaha N. L.1

Affiliation:

1. a Division of Agricultural Engineering, ICAR-Indian Agricultural Research Institute, New Delhi, India

2. b ICAR-Indian Institute of Water Management, Bhubaneshwar, India

3. c Division of Agricultural Engineering, ICAR-IARI, New Delhi, and NIH, North Western Regional Centre, Jodhpur, India

Abstract

ABSTRACT Climate change (CC) significantly influences agricultural water productivity, it is advisable to consider the adapting irrigation regimes to observed changes in precipitation patterns. This study aim is to assess trends and change point analysis of weather variables, namely temperature (T), precipitation (R), and reference evapotranspiration (ETo), utilizing 31 years of long-term data for a semi-arid climate. The analysis was carried out using Mann-Kendall (MK), Modified Mann-Kendall (MMK), Innovative Trend Analysis (ITA), and Innovative Polygon Trend Analysis (IPTA) methods. Homogeneity tests, including Pettitt's test, Standard Normal Homogeneity Test (SNHT), Buishand range test, and Von Neumann Ratio Test (VNRT), were employed to detect change points (CPs) in the time series data. The results indicated that, for maximum temperature (Tmax), MK and MMK revealed a positive trend for September and July, respectively, while minimum temperatures (Tmin) indicated Increasing trends in August and September. Precipitation exhibited an increasing trend during the Zaid season (April-May). ETo exhibited a negative trend in January. ITA and IPTA displayed a greater potential to detect the trends across months and seasons. Change point analysis revealed that for Tmax, the CP occurred in 1998 for April month time series data. Likewise, for Tmin, change points for April and August time series found in 1997. This study underscores shifting climatic parameters, emphasizing the importance of accounting for these changes in agricultural and water management strategies to ensure sustainability and resilience.

Publisher

IWA Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3