Water resources availability under different climate change scenarios in South East Iran

Author:

Iranmanesh Reza1,Jalalkamali Navid2,Tayari Omid3

Affiliation:

1. Department of Civil Engineering, Kerman Branch, Islamic Azad University, Kerman 7635131167, Iran

2. Department of Water Sciences and Engineering, Kerman Branch, Islamic Azad University, Kerman 7635131167, Iran

3. Department of Civil Engineering, North Tehran Branch, Islamic Azad University, Tehran 1651153311, Iran

Abstract

Abstract The comprehensive large-scale assessment of future available water resources is crucial for food security in countries dealing with water shortages like Iran. Kerman province, located in the south east of Iran, is an agricultural hub and has vital importance for food security. This study attempts to project the impact of climate change on available water resources of this province and then, by defining different scenarios, to determine the amount of necessary reduction in cultivation areas to achieve water balance over the province. The GFDL-ESM2M climate change model, RCP scenarios, and the CCT (Climate Change Toolkit) were used to project changes in climatic variables, and the Soil and Water Assessment Tool (SWAT) was used for hydrological simulation. The future period for which forecasts are made is 2020–2050. Based on the coefficient of determination (R2) and Nash–Sutcliffe coefficient, the CCT demonstrates good performance in data downscaling. The results show that under all climate change scenarios, most parts of the province are likely to experience an increase in precipitation yet to achieve water balance a 10% decrease in the cultivation area is necessary under the RCP8.5 scenario. The results of the SWAT model show that green water storage in central and western parts of the province is higher than that in other parts.

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Water Science and Technology,Global and Planetary Change

Reference37 articles.

1. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT

2. Assessing the impact of climate change on water resources in Iran

3. Detection of climate change with extreme precipitation indices in great Khorasan;Ahmadi;Researches in Earth Sciences,2015

4. Future climate change impact on hydrological regime of river basin using SWAT model;Anand;Global Journal of Environmental Science and Management,2019

5. Recent trends of extreme precipitation indices in the Iberian Peninsula using observations and WRF model results

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3