Improving the performance of rainfall-runoff models using the gene expression programming approach

Author:

Esmaeili-Gisavandani Hassan1ORCID,Lotfirad Morteza2ORCID,Sofla Masoud Soori Damirchi2,Ashrafzadeh Afshin3ORCID

Affiliation:

1. Faculty of Water & Environmental Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran

2. Civil Engineering and Architecture Faculty, Shahid Chamran University of Ahvaz, Ahvaz, Iran

3. Department of Water Engineering, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran

Abstract

Abstract In this study, five hydrological models, including the soil and water assessment tool (SWAT), identification of unit hydrograph and component flows from rainfall, evapotranspiration, and streamflow (IHACRES), Hydrologiska Byråns Vattenbalansavdelning (HBV), Australian water balance model (AWBM), and Soil Moisture Accounting (SMA), were used to simulate the flow of the Hablehroud River, north-central Iran. All the models were validated based on the root mean square error (RMSE), coefficient of determination (R2), Nash-Sutcliffe model efficiency coefficient (NS), and Kling-Gupta efficiency (KGE). It was found that SWAT, IHACRES, and HBV had satisfactory results in the calibration phase. However, only the SWAT model had good performance in the validation phase and outperformed the other models. It was also observed that peak flows were generally underestimated by the models. The sensitivity analysis results of the model parameters were also evaluated. A hybrid model was developed using gene expression programming (GEP). According to the error measures, the ensemble model had the best performance in both calibration (NS = 0.79) and validation (NS = 0.56). The GEP combination method can combine model outputs from less accurate individual models and produce a superior river flow estimate.

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Water Science and Technology,Global and Planetary Change

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3