Effects of sea ice change on the Arctic climate: insights from experiments with a polar atmospheric regional climate model

Author:

Liu Xiying1,Lu Chenchen2

Affiliation:

1. College of Oceanography, Hohai University, Nanjing 210098, China

2. College of Meteorology and Oceanography, National University of Defense Technology, Changsha 410008, China

Abstract

Abstract To get insights into the effects of sea ice change on the Arctic climate, a polar atmospheric regional climate model was used to perform two groups of numerical experiments with prescribed sea ice cover of typical mild and severe sea ice. In experiments within the same group, the lateral boundary conditions and initial values were kept the same. The prescribed sea ice concentration (SIC) and other fields for the lower boundary conditions were changed every six hours. 10-year integration was completed, and monthly mean results were saved for analysis in each experiment. It is shown that the changes in annual mean surface air temperature have close connections with that in SIC, and the maximum change of temperature surpasses 15 K. The effects of SIC changes on 850 hPa air temperature is also evident, with more significant changes in the group with reduced sea ice. The higher the height, the weaker the response in air temperature to SIC change. The annual mean SIC change creates the pattern of differences in annual mean sea level pressure. The degree of significance in pressure change is modulated by atmospheric stratification stability. In response to reduction/increase of sea ice, the intensity of polar vortex weakens/strengthens.

Funder

Fundamental Research Funds for the Central Universities

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Water Science and Technology,Global and Planetary Change

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Forecasting Arctic Sea Ice Concentration using Long Short-term Memory Networks;Proceedings of the 2023 8th International Conference on Machine Learning Technologies;2023-03-10

2. Editorial: Impact of climate change on the hydrological cycle;Journal of Water and Climate Change;2021-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3