Runoff modeling in Kolar river basin using hybrid approach of wavelet with artificial neural network

Author:

Tiwari Deepak Kumar1ORCID,Tiwari Hari Lal1ORCID,Nateriya Raman1

Affiliation:

1. Department of Civil Engineering, Maulana Azad National Institute of Technology, Bhopal 462003, Madhya Pradesh, India

Abstract

Abstract In this paper, the Kolar River watershed, Madhya Pradesh is taken as the study area. This study area is located in Narmada River in Central India. The data set consists of monthly rainfall of three meteorological stations, Ichhawar, Brijesh Nagar, and Birpur rainfall stations from 2000 to 2018, runoff data at Birpur and temperature data of Sehore district. In this paper, radial basis function neural network models have been studied for generation of rainfall–runoff modeling along with wavelet input and without wavelet input to the RBF neural network. A total of 15 models were developed in this experiment based on various combinations of inputs and spread constant of RBF model. The evaluation criteria for the best models selected are based on R2, AARE, and MSE. The best predicting model among the networks is model 8, which has input of R(t-1), R(t-2), R(t-3), R(t-4), and Q(t-1). For the RBFNN model, the maximum value of R2 is 0.9567 and the lowest values of AARE and MSE are observed. Similarly, for the WRBFNN model, the maximum value of R2 is 0.9889 and the lowest values of AARE and MSE are observed. WRBF performs better than RBF with any data processing techniques which shows the proposed model possesses better predictive capability.

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Water Science and Technology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3