Quantifying the potential impacts of land-use and climate change on hydropower reliability of Muzizi hydropower plant, Uganda

Author:

Bahati Hilary Keneth1,Ogenrwoth Abraham2,Sempewo Jotham Ivan1

Affiliation:

1. Department of Civil and Environmental Engineering, Makerere University, P.O. Box 7062, Kampala, Uganda

2. Department of Water Resources Engineering, Busitema University, P.O. Box 236, Tororo, Uganda

Abstract

Abstract Ugandan rivers are being tapped as a resource for the generation of hydropower in addition to other uses. Studies on the reliability of these hydropower plants due to climate and land-use/land cover changes on the hydrology of these rivers are scanty. Therefore, this study aimed to model the impact of the changing climate and land-use/cover on hydropower reliability to aid proper planning and management. The hydropower reliability of Muzizi River catchment was determined from its past (1998–2010) and midcentury (2041–2060) discharge at 30 and 95% exceedance probability under Representative Concentration Pathways (RCPs) of 4.5 and 8.5, respectively. The past and projected hydropower were compared to determine how future climate and land-use changes will impact the discharge and hydropower reliability of Muzizi River catchment. Six LULC scenarios (deforestation, 31–20%; grassland, 19–3%; cropland, 50–77%; water bodies, 0.02–0.01%; settlement, 0.23–0.37%, and Barren land 0.055–0.046% between 2014 and 2060) and three downscaled Regional Climate Model (REMO and RCA4 for precipitation and RACMO22T for temperature from a pool of four CORDEX (Coordinated Regional Climate Downscaling Experiment) Africa RCMs) were examined. A calibrated SWAT simulation model was applied for the midcentury (2041–2060) period, and a potential change in hydropower energy in reference to mean daily flow (designflow ≥ 30% exceedance probability), firm flow (flow ≥ 95% exceedance probability), and mean annual flow was evaluated under the condition of altered runoff under RCP4.5 and RCP8.5 climate change scenarios for an average of REMO and RCA4 RCM. The future land use (2060) was projected using the MOLUSCE (Module for Land Use Change Evaluation) plugin in QGIS using CA-ANN. Three scenarios have been described in this study, including LULC change, climate change, and combined (climate and LULC change). The results suggest that there will be a significant increase in annual hydropower generation capacity (from 386.27 and 488.1 GWh to 867.82 and 862.53 GWh under RCP4.5 and RCP8.5, respectively) for the combined future effect of climate and land-use/cover changes. Energy utilities need to put in place mechanisms to effectively manage, operate, and maintain the hydropower plant amidst climate and land-use change impacts, to ensure reliability at all times.

Funder

Water and Society - Makerere University Project

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Water Science and Technology,Global and Planetary Change

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3