Evaluation of 1D hydraulic models for the simulation of mountain fluvial floods: a case study of the Santa Bárbara River in Ecuador

Author:

Pinos Juan1,Timbe Luis1,Timbe Edison12

Affiliation:

1. Departamento de Recursos Hídricos y Ciencias Ambientales, Universidad de Cuenca, Av. Víctor Albornoz y Calle de los Cerezos, Cuenca, 010207, Ecuador

2. Facultad de Ciencias Agropecuarias, Universidad de Cuenca, Av. 12 de Octubre y Calle Menéndez y Pelayo, Cuenca, 010205, Ecuador

Abstract

Abstract River flooding is a key topic for water managers because of the social and economic losses it can cause. The complex topography and dynamics of mountain rivers has limited the analysis of their behavior during flood events (e.g., sediment transport, flooding). This study aims to test the performance of three hydraulic 1D models (HEC-RAS, MIKE 11, and Flood Modeller) to estimate inundation water levels for a mountain river. The evaluation of these models was performed considering steady state conditions through 10 scenarios, i.e. five discharge return periods, and two types of cross sections data: (a) type I, a detailed field survey complemented with information extracted from DEM, derived from LiDAR; and (b) type II, cross sections exclusively derived from the DEM. The research was conducted for a reach of 5 km of the Santa Bárbara River, with an average slope of 0.25%. HEC-RAS model results for cross sections type I, were previously validated and therefore used as reference for comparison between other models and scenarios. The goodness-of-fit between models was measured based on the Nash-Sutcliffe model efficiency coefficient (EF). The main goal of the current study was to determine the variability of inundation level results compared with a validated model as reference, using the same input data for the three modeling packages. Our analysis shows that, when using cross section type I, the evaluated modeling packages yield similar results (EF were between 0.94 and 0.99). On the other hand, the goodness of fit decreased when using type II data, with an average EF of 0.98 (HEC-RAS), 0.88 (Flood Modeller) and 0.85 (MIKE 11) when compared to the reference model. The authors conclude that it is highly recommend for practitioners to use geometric data type I instead of type II in order to obtain similar performance in the tested models. Only HEC-RAS type II has the same performance as type I models (average EF of 0.98).

Publisher

IWA Publishing

Subject

Water Science and Technology

Reference28 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3