Influence of the microbial content of different precursory nuclei on the anaerobic granulation dynamics

Author:

El-Mamouni R.12,Leduc R.2,Costerton J. W.3,Guiot S. R.124

Affiliation:

1. Biotechnology Research Institute, NRC, Montréal, Québec, H4P 2R2, Canada

2. Department of Civil Engineering, University of Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada

3. Center for Biofilm Engineering, Montana State University, Bozeman, Montana 59717-0398, USA

4. Author for correspondence

Abstract

Anaerobic granule nuclei enriched in either acidogens (AF), syntrophic consortia (SN), Methanosaeta spp. (MT) and Methanosarcina spp. (MN) were developed in four upflow bed filter reactors fed with sucrose, an ethanol/acetate mixture, acetate and methanol, respectively. The four developed granule nuclei presented different settling velocities: 3.2, 8.7, 10.5 and 11.3 m/h for the AF flocs, the MS-, the SN- and the MT-nuclei, respectively. The ash content represented 60%, 40%, 30% and 16% of dry weight for the MT-, MS-, SN-enriched nuclei, and AF flocs, respectively. Acidogenic flocs contained high amount of extracellular polymeric substances. The influence of these four different nuclei on the time course of complex granule development was investigated by shifting the feed carbon of all of the four reactors to sucrose. Granulation proceeded rapidly both on syntrophic and Methanosaeta nuclei. The largest granules (Sauter diameter of 2.36 mm), however, were obtained within the shortest period in the reactor started with syntrophic nuclei. These nuclei presented also the best colonization by fermentative bacteria as shown by the evolution of their glucotrophic activities. Less satisfying granulation was obtained on Methanosarcina nuclei. In contrast, granulation was significantly retarded when acidogens were used as precursors. From these results it appears that syntrophs and Methanosaeta spp. play the principal role in anaerobic granulation process.

Publisher

IWA Publishing

Subject

Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3