Real time control schemes for improving water quality from bioretention cells

Author:

Persaud P. P.1,Akin A. A.1,Kerkez B.2,McCarthy D. T.3,Hathaway J. M.1

Affiliation:

1. Department of Civil and Environmental Engineering, University of Tennessee, 325 John D. Tickle Building, 851 Neyland Dr., Knoxville, TN, 37996, USA

2. Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, USA

3. Environmental and Public Health Microbiology Lab (EPHM Lab), Department of Civil Engineering, Monash University, Melbourne, VIC, Australia

Abstract

Abstract Extreme weather and the proliferation of impervious areas in urban watersheds increases the frequency of flood events and deepens water quality concerns. Bioretention is a type of green infrastructure practice developed to mitigate these impacts by reducing peak flows, runoff volume, and nutrient loads in stormwater. However, studies have shown inconsistency in the ability of bioretention to manage some pollutants, particularly some forms of nitrogen. Innovative sensor and control technologies are being tested to actively manage urban stormwater, primarily in open water stormwater systems such as wet ponds. Through these cyber-physical controls, it may be possible to optimize storage time and/or soil moisture dynamics within bioretention cells to create more favorable conditions for water quality improvements. A column study testing the influence of active control on bioretention system performance was conducted over a 9-week period. Active control columns were regulated based on either maintaining a specific water level or soil moisture content and were compared to free draining (FD) and internal water storage standards. Actively controlled bioretention columns performed similarly, with the soil moisture-based control showing the best performance with over 86% removal of metals and total suspended solids (TSS) while also exhibiting the highest ammonium removal (43%) and second highest nitrate removal (74%). While all column types showed mostly similar TSS and metal removal trends (median 94 and 98%, respectively), traditionally FD and internal water storage configurations promoted aerobic and anaerobic processes, respectively, which suggests that actively controlled systems have greater potential for targeting both processes. The results suggest that active controls can improve upon standard bioretention designs, but further optimization is required to balance the water quality benefits gained by retention time against storage needs for impending storms.

Funder

National Science Foundation

Publisher

IWA Publishing

Subject

General Medicine

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3