Affiliation:
1. Department of Civil Engineering, Mepco Schlenk Engineering College, Virudhunagar (District), Tamilnadu, 626 005, India
2. National University of Singapore, Singapore
Abstract
Prediction of high magnitude flows is of interest in many hydrological applications such as operation of flood control reservoirs, flood forecasting and gated spillways. Of the various types of existing streamflow prediction approaches, data driven models (such as ANN) are increasingly being preferred over the traditional conceptual models due to their simplicity, fast speed and ease of use. For models that consider only historical streamflow data, an attempt has been made to design a robust model over a wide range of streamflow magnitudes. The model inputs are the immediate past streamflow data which generally do not predict the typically high flows well, particularly for large lead times.
In this study, the flow range is divided into three regions (low, medium and high flow regions) and the attributes are decided based on the underlying hydrological process of the flow region. A flow forecasting model is applied for each flow region, using only the historical streamflow data as input. The proposed approach is implemented in Tryggevælde Catchment (Denmark) for 1- and 3-lead days, using the Support Vector Machine (SVM), which yields promising results, particularly for high flows in a 3-lead day model.
Subject
Water Science and Technology
Cited by
55 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献