Affiliation:
1. a Department of Civil and Environmental Engineering, College of Engineering, Chung-Ang University, Seoul 06974, Korea
2. b School of Civil, Environmental and Architectural Engineering, College of Engineering, Korea University, Seoul 02841, Korea
Abstract
Abstract
Most empirical formulae for the basin concentration time (Tc) and storage coefficient (K) focus on estimating the representative values under the ordinary condition, with their return period being a maximum of 100–200 years. Under more extreme conditions, those parameters should be modified to consider faster velocity conditions. The main objective of this study is to examine the possibility of determining these parameters corresponding to the given peak velocity (vp) at the basin outlet. Two issues are involved in this problem; one is whether Tc can be fully expressed by vp, while the other is whether K is still linearly proportional to Tc under extreme conditions. In this study, these two issues are resolved by the theoretical review of these parameters, as well as an analysis of the rainfall–runoff events collected at the Chungju Dam basin, Korea. It is observed that as vp increases, Tc and K decrease. Their relationship is close to inverse but in linear proportion. That is, strong linear relationships are found among Tc, K, and vp. As a result, the ratio of K to Tc is found to be almost identical, regardless of vp. This ratio at a basin can be assumed as a basin characteristic that is unchanged, regardless of the size of rainfall events.
Subject
Water Science and Technology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献