A comparative assessment of CMIP5 and CMIP6 in hydrological responses of the Yellow River Basin, China

Author:

Guo Yuxue1,Yu Xinting1,Xu Yue-Ping1,Wang Guoqing2,Xie Jingkai1,Gu Haiting1

Affiliation:

1. a Institute of Hydrology and Water Resources, Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China

2. b The State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing, Jiangsu Province 210029, China

Abstract

Abstract Investigation of the role of multiple general circulation model (GCM) ensembles in obtaining comprehensive knowledge of hydrological responses across the Yellow River Basin (YRB), China, is still of substantial importance. This study evaluates the performance of the Coupled Model Intercomparison Project Phase 6 (CMIP6) models in simulating the hydrological regime in the YRB and compares the results with those from CMIP 5 (CMIP5). The comparison is performed between 21 GCMs from CMIP6 under three Shared Socioeconomic Pathway scenarios and 18 GCMs from CMIP5 under three Representative Concentration Pathway scenarios. Raw CMIP outputs are first corrected and downscaled by the Bias Correction and Spatial Disaggregation methods, and the bias-corrected GCM outputs are then employed to drive the Soil and Water Assessment Tool hydrological model and project streamflow. After correction and downscaling, areal averages for future changes (relative to 1971–2000) of temperature and precipitation are found larger in CMIP6 than in CMIP5. The emblematic annual mean temperature of CMIP6 increases by 1.64–2.20 and 2.31–5.29 °C for the future period of 2026–2055 and 2066–2095, while the counterpart of CMIP5 is 1.92–2.39 and 1.68–4.76 °C, respectively. In terms of precipitation, for CMIP6, it increases by 3.45–4.70 and 6.77–15.40%, and for CMIP5 by 2.58–2.96 and 3.83–9.95%. It is further concluded that: (1) future streamflow will probably decrease less under CMIP6 than that under CMIP5 in most cases, and climate changes of this kind will affect regional water supply and security in the YRB; (2) uncertainty in the projected streamflow is dominated by GCMs uncertainty with the contribution rate of >75%; (3) the streamflow is more sensitive to precipitation changes in comparison with temperature changes in the near future. In contrast, streamflow reduction is more attributed to an increase in temperature with a contribution rate of almost >60% than in precipitation in the far future.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3