Influence of reservoir impoundment on rainfall erosivity in the Three Gorges Reservoir region of China

Author:

Jiang Guangyi123,Lv Jiaorong14,He Xiubin1,Bao Yuhai1

Affiliation:

1. a Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, Sichuan, China

2. b Chongqing Eco-environment Monitoring Station of Soil and Water Conservation, Chongqing 401147, China

3. c University of Chinese Academy of Sciences, Chengdu, Sichuan, China

4. d Present/permanent address: No. 9, 4th Section, South Renmin Road, Wuhou District, Chengdu, Sichuan, China

Abstract

Abstract New dammed reservoirs are expected to have a significant effect on the regional hydrocycle, but the detailed patterns may not be well understood. Regional climate change is likely to cause soil erosion uncertainty by affecting rainfall erosivity. In the present study, local precipitation and rainfall erosivity were investigated to determine the impounding influence of the Three Gorges Reservoir. Daily erosive precipitation, from 1980 to 2020, was categorized into four intensity levels (light, moderate, heavy, and very heavy), as well as extreme rainfall, to understand their contribution to erosivity. It was found that the impoundment significantly affected local precipitation, with both heavy precipitation and the relative erosivity showing a substantial declining trend (Sen's slope = 2.141, p < 0.05). The Mann–Kendall test indicated an abrupt change point around the year 2002, evidencing the effect of the reservoir impoundment (since 2003). Reservoir impoundment redistributed the intensity levels of erosive precipitation, leading to a 24.3% decrease in the erosivity of heavy precipitation and an 8.2% increase in the moderate category. The unimodal distribution of monthly precipitation was altered to a bimodal distribution with peaks in July and September, resulting in a longer but lower-risky erosion period of high concern. The fluctuations of Rx1day and Rx5day were obviously flattened after impoundment, with a 54.2% peak reduction in relative erosivity on average. Results indicated that heavy rainfall (including extreme rainfall) was reduced, and annual precipitation and erosivity both had a more even seasonal distribution following reservoir impoundment.

Funder

Natural Science Foundation of China

Sichuan Province Science and Technology Support Program

Publisher

IWA Publishing

Subject

Water Science and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3