Effects of climate and anthropogenic changes on current and future variability in flows in the So'o River Basin (south of Cameroon)

Author:

Ebodé Valentin Brice12ORCID,Dzana Jean Guy1,Nkiaka Elias3,Nnomo Bernadette Nka4,Braun Jean Jacques2,Riotte Jean5

Affiliation:

1. a Department of Geography, University of Yaounde 1, Yaounde, P.O. Box 755, Cameroon

2. b International Joint Laboratory DYCOFAC, IRGM-UY1-IRD, Yaounde BP 1857, Cameroon

3. c Department of Geography, University of Sheffield, Sheffield S10 2TN, South Yorkshire, UK

4. d Institute of Mining and Geological Research (IRGM), Hydrological Research Center, Yaounde, P.O. Box 4110, Cameroon

5. e Indo-French Cell for Water Sciences, Joint IRD-IISc Laboratory, Indian Institute of Science, Bangalore, India

Abstract

Abstract Due to climate and environmental changes, sub-Saharan Africa (SSA) has experienced several drought and flood events in recent decades with serious consequences on the economy of the sub-region. In this context, the region needs to enhance its capacity in water resources management, based on both good knowledge of contemporary variations in river flows and reliable forecasts. The objective of this article was to study the evolution of current and future (near (2022–2060) and distant (2061–2100)) flows in the So'o River Basin (SRB) in Cameroon. To achieve this, the Pettitt and modified Mann–Kendall tests were used to analyze hydrometeorological time series in the basin. The Soil and Water Assessment Tool (SWAT) model was used to simulate the future flows in the SRB. The results obtained show that for the current period, the flows of the So'o decrease due to the decrease in precipitation. For future periods, a change in precipitation in line with the predictions of the CCCma model will lead to a decrease in river discharge in the basin, except under the RCP8.5 scenario during the second period (2061–2100), where we note an increase compared to the historical period of approximately +4%. Results from the RCA4 model project an increase in precipitation which will lead to an increase in river discharge by more than +50%, regardless of the period and the scenario considered. An increase in discharges was noted in some cases despite a drop in rainfall, particularly in the case of discharges simulated for the second period (2061–2100) from the outputs of the CCCma model. This seems to be a consequence of the increase in impervious spaces, all the more the runoff increases during this period according to the model. Results from this study could be used to enhance water resources management in the basin investigated and the region.

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3