Particle size characteristics of sediment by sheet erosion and their responses to related parameters on a Loess hillslope: a plot-scale study

Author:

Zhang Qingwei1,Ma Sanbao23,Liu Sijun23,Lei Xin3,Liu Shanshan3,Du Xue3

Affiliation:

1. College of Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China

2. State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, PR China

3. Suide Scientific Experimental Station for Soil and Water Conservation, The Yellow River Conservancy Commission, Yulin, Shaanxi 719000, PR China

Abstract

Abstract Particle size distribution (PSD) of sediment by sheet erosion not only indicates erosion behaviors, but also provides a basis for potential nutrient losses. PSDs are significantly influenced by topographic, rainfall, and associate runoff characteristics, such as rainfall intensity (I), rainfall kinetic energy (KE), slope gradient (S), runoff velocity (v), and stream power (Ω), while their effects have not been fully understood so far. To fill this research gap, in this study, simulated rainfall experiments were conducted to investigate the characteristics of effective and ultimate PSDs of sediments, as well as their responses to related parameters, under five levels of I and S. The results showed that (1) for effective PSDs, there was a significant enrichment of clay-sized and silt-sized fractions (P<2μm and P2–50μm) in sediment (percentage range: 12.11–20.64% and 57.09–65.94%), whereas there was a depletion of sand-sized fractions (P50–250μm and P250–2000μm). The ultimate PSDs of sediment were, however, similar to the soil matrix under experimental conditions. (2) With an increase in I and S, P<2μm and P2–50μm decreased exponentially or logarithmically, and P50–250μm and P>250μm increased correspondingly. The contribution rates (PCs) of the effect of I on clay-, silt-, fine-sand-, and coarse-sand-sized fractions in sediment were 23.44, 35.45, 29.09, and 56.82%, respectively, whereas the PCs of that of S were 56.54, 24.42, 59.89, and 31.47%, respectively, indicating that S plays a more pivotal role in influencing P<2μm and P50–250μm, whereas P2–50μm and P>250μm were more sensitive to I than to S. (3) The aggregation ratio (AR) for the fractions of different sizes indicated that clay-sized particles tend to be transported as aggregates, while silt-sized particles tend to be transported as primary particles. A higher I or steeper S leads to a larger proportion of particles being transported as aggregates. (4) KE, Ω, and unit stream power (U) were the most correlated parameters influencing effective PSDs. Equations were finally established using KE, Ω, and U to predict the effective PSDs of sediment by sheet erosion. This study can further the understanding of the sheet erosion process and provide a scientific basis for the establishment of a sheet erosion model.

Funder

Open Research Fund of State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research

National Natural Science Foundation of China funded project

Chinese Universities Scientific Fund

Open Research Fund of State Key Laboratory of Soil Erosion and dryland Farming on the Loess Plateau

Publisher

IWA Publishing

Subject

Water Science and Technology

Reference60 articles.

1. Flow-driven soil erosion processes and the size selectivity of sediment;J. Hydrol.,2011

2. Interrill soil erosion and slope steepness factors;Soil Sci. Soc. Am. J.,1996

3. Law of sediment production and characteristics of eroded sediment on slope based on simulated rainfall;Soil Water Conserv. China,2015

4. Crusting and time-dependent rain wash mechanisms on loamy soils;Morgan,1981

5. Sediment composition for nonpoint source pollution analyses;Trans. Am. Soc. Agric. Eng.,1985

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3