Forecasting of groundwater level fluctuations using a hybrid of multi-discrete wavelet transforms with artificial intelligence models

Author:

Momeneh Sadegh1,Nourani Vahid23ORCID

Affiliation:

1. a Department of Civil Engineering, Faculty of Technical Engineering, Razi University, Kermanshah, Iran

2. b Center of Excellence in Hydroinformatics and Faculty of Civil Engineering, University of Tabriz, Tabriz, Iran

3. c Near East University, Faculty of Civil and Environmental Engineering, Nicosia, Turkey

Abstract

Abstract Groundwater is often one of the significant natural sources of freshwater supply, especially in arid and semi-arid regions, and is of paramount importance. This study provides a new and high accurate technique for forecasting groundwater level (GWL). The artificial intelligence (AI) models include the artificial neural network (ANN) of multi-layer perceptron (MLP) and radial basis function network (RBF), and adaptive neural-fuzzy inference system (ANFIS) models. Input data to the models is the monthly average GWL of 17 piezometers. In this study, a preprocessing of data including the discrete wavelet transform (DWT) and multi-discrete wavelet transform (M-DWT) simultaneously was utilized. The results showed that the hybrid M-DWT-ANN, M-DWT-RBF, and M-DWT-ANFIS models compared to the DWT-ANN, DWT-RBF, and DWT-ANFIS models as well as than regular ANN, RBF, and ANFIS models, had the highest accuracy in forecasting GWL for the 1-, 2-, 3-, and 6-months ahead. Also, the M-DWT-ANN model had the best performance. Overall, the results illustrated that using the M-DWT method as preprocessing of input data can be a valuable tool to increase the predictive model's accuracy and efficiency. The results of this study indicate the potential of M-DWT-AI hybrid models to improve GWL forecasting.

Publisher

IWA Publishing

Subject

Water Science and Technology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3