Optimisation of the nanofiltration process of residual wastewater from table olives using synthetic solutions for the recovery of phenolic compounds

Author:

Cazares-Carrión Karem Y.1,Abreu-Naranjo Reinier1

Affiliation:

1. Departamento de Ciencias de la Vida, Universidad Estatal Amazónica, Puyo, 160150, Ecuador

Abstract

Abstract Synthetic solution of ultrafiltration permeate from brine wastewater from the elaboration process of table olives was used to investigate the simulation and optimisation of the nanofiltration process with the aim of reducing the contents of salt and organic material, as well as maintaining the major phenolic content in the permeate of nanofiltration as a contribution to their possible recovery. The synthetic solution was elaborated by considering the main characteristics of the ultrafiltration permeate of residual brine from table olive fermentation. A response surface methodology – central composite design (RSM-CCD) was used. The efficiency of conductivity (Ec), total polyphenol content (TPC) and chemical oxygen demand rejections (RTPC and RCOD) were the response variables selected. Transmembrane pressure (TMP), cross-flow velocity (CFV) and nanomembrane type (NF270 and NF245) were the independent variables. The range for RTPC was from 0.59 to 3.34%, while the values for Ec were higher than the NF270 membrane, being between 13.63 and 24.13%. The RSM-CCD results indicate that the optimum that satisfies the objectives of the research were: nanomembrane (NF245), TMP (14.43 bar) and CFV (1.50 m/s). This allowed the permeate to keep 97.39% of polyphenol contents and reduce organic material and salts by 52 and 23%, respectively.

Funder

Universitat Politècnica de València

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3