Perspectives of intracellular polymers in functional evaluation of the microbes for EBPR

Author:

Srivastava Ghazal1,Kazmi Absar Ahmad1

Affiliation:

1. Environmental Engineering Group, Department of Civil Engineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India

Abstract

Abstract To substantiate and interpret the performance of the Enhanced Biological Phosphorus Removal (EBPR) processes with simultaneous nitrogen removal in five full-scale sequencing batch reactors (SBR) systems (with or without pre-anoxic/anaerobic selector) across India, conventional microscopic examinations were performed. Regular examining and cyclic behavior evaluation studies specified that these systems worked for EBPR with effectiveness depending on the wastewater quality and operational steadiness. Treatment with Neisser stain for identifying polyphosphates (poly-P) and Sudan black B stain for observing poly-β-hydroxybutyrates (PHB) granules showed that the enriched biomass of the SBR plants was very diverse concerning morphology, residing populations of traditional rod-shaped PAOs, tetrad (or Sarcina-like cells) forming organisms (submitted as TFOs instead of GAOs), diplococci-shaped cells, and staphylococci-like clustered populations (CC), including few filaments which correlate well with biochemical processes undergoing in SBR plants. SBR plants with readily biodegradable chemical oxygen demand (rbCOD) fraction in COD > 16% and rbCOD/TP ∼10–20 in Varanasi, Mumbai, and Gurgaon, respectively, have performed for >20% EBPR (∼77.8%, ∼76.6%, and ∼84.8% TP removal, respectively) as well as >85% Simultaneous Nitrification and Denitrification (SND). This study can open novel dimensions for optimization by relating microscopic observations (qualitative examination) with the processes undergoing in the plants under varied physicochemical parameters.

Funder

ministry of human resource development

Publisher

IWA Publishing

Subject

Water Science and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3