Temperature analysis of a novel MAIB reactor during the treatment of wastewater from recycled paper mill

Author:

Zwain Haider M.12,Naje Ahmed Samir1,Vakili Mohammadtaghi3,Dahlan Irvan45

Affiliation:

1. College of Water Resources Engineering, Al-Qasim Green University, Al-Qasim Province, Babylon, Iraq

2. Department of Civil and Architectural Engineering, College of Engineering, Sultan Qaboos University, P.O. Box 33, Al-Khodh, 123 Muscat, Oman

3. Green Intelligence Environmental School, Yangtze Normal University, Chongqing 408100, China

4. School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, Seri Ampangan, 14300 Nibong Tebal, Penang, Malaysia

5. Solid Waste Management Cluster, Science and Engineering Research Centre, Universiti Sains Malaysia, Engineering Campus, Seri Ampangan, 14300 Nibong Tebal, Penang, Malaysia

Abstract

Abstract Anaerobic digestion (AD) is an essential technology for wastewater management, resource recovery and biogas production, and it is considered as an efficient and reliable treatment method for many wastewaters. Operating parameters have been shown to directly affect the stability and treatment performance of AD, especially temperature. For 180 days, the AD of recycled paper mill wastewater (RPMW) was carried out in a modified anaerobic inclining-baffled (MAIB) reactor under various temperature conditions, i.e. 29 °C (low mesophilic), 37 °C (mesophilic) and 55 °C (thermophilic). It was found that total COD removal of 94, 96 and 76%, and methane yields of 0.125, 0.196 and 0.256 L CH4/g CODremoved were attained at temperatures of 29, 37 and 55 °C, respectively. Throughout the three transition periods, the pH level in the MAIB reactor fluctuated slightly within the range of 5.8–6.5 without affecting the system stability. The results concluded that thermophilic condition strongly influenced the MAIB reactor performance, leading to lower COD removal, higher methane yield and gradually recovered pH level.

Funder

Universiti Sains Malaysia

Publisher

IWA Publishing

Subject

Water Science and Technology

Reference36 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3