Affiliation:
1. Department of Civil Engineering, NIT Kurukshetra, Haryana 136119, India
Abstract
Abstract
The present paper deals with performance evaluation of application of three machine learning algorithms such as Deep neural network (DNN), Gradient boosting machine (GBM) and Extreme gradient boosting (XGBoost) to evaluate the ground water indices over a study area of Haryana state (India). To investigate the applicability of these models, two water quality indices, namely Entropy Water Quality Index (EWQI) and Water Quality Index (WQI) are employed in the present study. Analysis of results demonstrated that DNN has exhibited comparatively lower error values and it performed better in the prediction of both indices, i.e. EWQI and WQI. The values of Correlation Coefficient (CC = 0.989), Root Mean Square Error (RMSE = 0.037), Nash–Sutcliffe efficiency (NSE = 0.995), Index of agreement (d = 0.999) for EWQI and CC = 0.975, RMSE = 0.055, NSE = 0.991, d = 0.998 for WQI have been obtained. From variable importance of input parameters, the Electrical conductivity (EC) was observed to be most significant and ‘pH’ was least significant parameter in predictions of EWQI and WQI using these three models. It is envisaged that the results of study can be used to righteously predict EWQI and WQI of groundwater to decide its potability.
Funder
Ministry of Human Resource Development
Subject
Water Science and Technology
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献