Direct resource recovery from sewage using a combined system of anaerobic-aerobic biological treatment and food production

Author:

Tanikawa Daisuke1ORCID,Shimomura Kenta1,Motokawa Daisuke2,Itoiri Yuya2,Kimura Zen-Ichiro1

Affiliation:

1. Department of Civil and Environmental Engineering, National Institute of Technology (KOSEN), Kure College, P.C. 7378506 Kure, Japan

2. Advanced Course, Project Design Engineering, National Institute of Technology (KOSEN), Kure College, P.C. 7378506 Kure, Japan

Abstract

Abstract A combined system of an anaerobic baffled reactor (ABR), a down-flow hanging sponge (DHS) reactor, an aquarium tank (AT), and a constructed wetland (CWL) was proposed as a new concept for sewage treatment. The ABR and DHS reactor, AT, and CWL were applied for biological sewage treatment, bioassay, and nutrient removal with food production, respectively. Killifishes and tomatoes were cultivated in the AT and CWL, respectively. In the ABR, 81.3% of total chemical oxygen demand and 76.5% of total biochemical oxygen demand were removed at 5.1 h of hydraulic retention time (HRT). Most remaining organic matter and 47.1% of ammonia were removed in the DHS reactor. In the CWL, 97.0% of total inorganic nitrogen and 78.6% of phosphate were removed with 3.87 kg/m2 of tomatoes producing yield at 4.4 days of HRT. In addition, anaerobic ammonium-oxidizing bacteria Candidatus Scalindua and ammonia-oxidizing bacteria Nitrospira and Nitorosococcus were considered as contributors to nitrogen removal in the CWL. The final effluent's water can be utilized as recycled water by installation of sand filtration and disinfection processes. Therefore, the proposed system can be applied as a low-energy, low-cost sewage treatment system with direct resource recovery.

Funder

the Fuso innovative technology fun

Publisher

IWA Publishing

Subject

Water Science and Technology

Reference47 articles.

1. Removal and recovery of nutrients from municipal sewage: algal vs. conventional approaches;Water Research,2020

2. Constructed floating wetland for the treatment of domestic sewage: a real-scale study;Journal of Environmental Chemical Engineering,2018

3. Ecotoxicological bioassays: an innovative tool for wastewater pollution control;Research Journal of Chemistry and Environment,2020

4. The evolution of parasitism in Nematoda;Parasitology,2015

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3