Degradation of tetracycline using nanoparticles of zero-valent iron and copper

Author:

Ayoub Mohamed1

Affiliation:

1. Public Works Engineering Department, Faculty of Engineering, Tanta University, Tanta, Egypt

Abstract

Abstract Tetracycline (TC) is one of the most persistent pharmaceuticals in the ecosystem. Advanced oxidation processes (AOPs) are suitable and effective technology for treating wastewater contaminated with antibiotics such as TC. In this manner, Fenton-like reaction is effective for wastewater treatment from toxicity and non-biodegradable organic pollutants using bimetallic nanoparticles. This study aims to verify the effect of AOPs using ZVI/Cu bimetallic nanoparticles on removing the TC antibiotic via a Fenton-like reaction, and what is necessary to evaluate the factors that influence the reaction, i.e. pH, ZVI/Cu dose, stirring intensity, H2O2 concentration, and initial TC dosage. The obtained results indicated that the TC removal reached up to 82.3% with an initial TC dose of 8 μg/L. In addition, the TC degradation process is more effective in an acidic medium than in an alkaline medium. Furthermore, the TC removal reached up to 85.1% with a ZVI/Cu dose of 1.2 g/L. On the other hand, the optimum mixing intensity value was 200 rpm, and the optimum H2O2 dose was 2 g/L according to the conditions of the present study.

Publisher

IWA Publishing

Subject

Water Science and Technology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3