Effective removal of Cu2+ ions from polluted water using new bio-adsorbents

Author:

Jagadeeswara Reddy B.1,Pala Sneha Latha1,Biftu Wondwosen Kebede12,Suneetha M.3,Ravindhranath Kunta1

Affiliation:

1. Department of Chemistry, Koneru Lakshmaiah Education Foundation, Green Fields, Vaddeswaram-522 502, Guntur Dt., Andhra Pradesh, India

2. Ethiopian Radiation Protection Authority, Addis Ababa, Ethiopia

3. Department of Chemistry, Rajiv Gandhi University of Knowledge Technologies, Srikakulam, Andhra Pradesh, India

Abstract

Abstract Sorbents derived from stem powders of Feronia limonia (FLSP), Amorphophallus paeoniifolius (APSP) and Pumpkin (Cucurbitapepo) (PSP) plants are investigated for the removal of Cu2+ ions from polluted water by adopting batch methods of extraction. Extraction conditions are optimized for the effective removal of Cu2+ ions. High sorption capacities are observed: 175.5 mg/g for FLSP; 140.4 mg/g for APSP; 130.0 mg/g for PSP. Effective pH ranges are: 5 to 10 for FLSP; 6 to 10 for APSP and 7 to 10 for PSP. The three spent adsorbents can be regenerated and used. Thermodynamic parameters indicate that the adsorption process is spontaneous, endothermic and have positive change in entropy values. As ΔH values are more than 25.0 kJ/mole, the adsorption may be due to surface complex formation between Cu2+ ions and functional groups of the adsorbents viz., -OH, -COOH etc. in the effective pH ranges. The good adsorption behaviour of FLSP even in acidic pHs may be due to the ion-exchange of Cu2+ ions for H+ ions of the functional groups of the adsorbent. The Langmuir adsorption isotherm and pseudo second-order model describe well the adsorption process. The sorbents are effectively applied to treat effluents from Cu-based industries and polluted lake water.

Publisher

IWA Publishing

Subject

Water Science and Technology

Reference53 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3