A statistical bias correction technique for global climate model predicted near-surface temperature in India using the generalized regression neural network

Author:

Dutta Diljit1ORCID,Bhattacharjya Rajib Kumar1ORCID

Affiliation:

1. Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India

Abstract

Abstract Global climate models (GCMs) developed by the numerical simulation of physical processes in the atmosphere, ocean, and land are useful tools for climate prediction studies. However, these models involve parameterizations and assumptions for the simulation of complex phenomena, which lead to random and structural errors called biases. So, the GCM outputs need to be bias-corrected with respect to observed data before applying these model outputs for future climate prediction. This study develops a statistical bias correction approach using a four-layer feedforward radial basis neural network – a generalized regression neural network (GRNN) to reduce the biases of the near-surface temperature data in the Indian mainland. The input to the network is the CNRM-CM5 model output gridded data of near-surface temperature for the period 1951–2005, and the target to the model used for bias correcting the input data is the gridded near-surface temperature developed by the Indian Meteorological Department for the same period. Results show that the trained GRNN model can improve the inherent biases of the GCM output with significant accuracy, and a good correlation is seen between the test statistics of observed and bias-corrected data for both the training and testing period. The trained GRNN model developed is then used for bias correction of CNRM-CM5 modelled projected near-surface temperature for 2006–2100 corresponding to the RCP4.5 and RCP8.5 emission scenarios. It is observed that the model can adapt well to the nature of unseen future temperature data and correct the biases of future data, assuming quasi-stationarity of future temperature data for both emission scenarios. The model captures the seasonal variation in near-surface temperature over the Indian mainland, having diverse topography appreciably, and this is evident from the bias-corrected output.

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Water Science and Technology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3